Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion.

نویسندگان

  • Nitin N Bhatia
  • Kenneth H Lee
  • Christopher N H Bui
  • Mario Luna
  • George M Wahba
  • Thay Q Lee
چکیده

STUDY DESIGN Controlled laboratory study. OBJECTIVE To evaluate the biomechanical characteristics of a new expandable interbody cage in single-segment posterior lumbar interbody fusion (PLIF) using cadaveric lumbar spines. SUMMARY OF BACKGROUND DATA One of the popular methods of treating lumbar spine pathologies involves a posterior lumbar interbody fusion using bilateral interbody nonexpandable cages. However, this method can require extensive bony removal and nerve root retraction. Expandable interbody cages may decrease the risk associated with PLIFs. METHODS Biomechanical testing was performed on 5 fresh frozen L4/L5 mobile functional spinal units using a custom testing system that permits 6 df and a digital video digitizing system. The specimens were tested intact, postdiscectomy, after interbody cage placement, and after cage placement and pedicle screw fixation. Each specimen was tested from 0.5 to 8.0 N·m for extension, flexion, lateral bending, and rotation, and from 5 to 300 N for axial compression. The angular displacement, stiffness, disc height, and sagittal alignment were determined. RESULTS When the cage was supplemented with pedicle screw fixation, the mean angular displacement for rotation and lateral bending was significantly less than all other conditions (P < 0.05). The percentage range of motion (% ROM) showed a statistically significant decrease in lateral bending (P < 0.05) for cage alone vs. postdiscectomy. For the pedicle screw construct, rotation showed a significantly lower percentage ROM compared with all other constructs (P < 0.05), and lateral bending and extension-flexion showed a significantly lower percentage ROM compared with postdiscectomy (P < 0.05). For all motions, stiffness of the cage and pedicle screw construct was greater than intact, with only rotation showing a statistically significant increase (P < 0.05). Anterior disc height was restored to intact after cage alone (P < 0.05). Sagittal alignment did not show statistically significant differences. CONCLUSION PLIF using expandable lumbar interbody cage requires pedicle screw fixation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinal Decompression and Stabilization: Expandable PLIF Cages over TLIF Cages for Spinal Fusion

Study design: An in vitro biomechanical flexibility and fatigue test comparing two different lumbar interbody fusion cages using mono segmental lumbar spine specimens. Objective: To investigate and compare the stabilizing effect of a transforaminal lumbar interbody fusion (TLIF) cage against an expandable posterior lumbar interbody fusion (PLIF) cage. Method: Six intact human lumbar spine segme...

متن کامل

Biomechanical Evaluation of a Novel Apatite-Wollastonite Ceramic Cage Design for Lumbar Interbody Fusion: A Finite Element Model Study

Objectives Cage design and material properties play a crucial role in the long-term results, since interbody fusions using intervertebral cages have become one of the basic procedures in spinal surgery. Our aim is to design a novel Apatite-Wollastonite interbody fusion cage and evaluate its biomechanical behavior in silico in a segmental spinal model. Materials and Methods Mechanical properti...

متن کامل

Analysis of the correlative factors in the selection of interbody fusion cage height in transforaminal lumbar interbody fusion.

BACKGROUND Selecting an interbody cage with appropriate height is one of the key steps in lumbar interbody fusion, and has an important impact on clinical efficacy. How to choose the appropriate height of the cage becomes one of the core problems of lumbar interbody fusion for spine surgeons. However, studies about objective selection criteria on interbody cage height was rare. METHODS One hu...

متن کامل

Multiexpandable cage for minimally invasive posterior lumbar interbody fusion

The increasing adoption of minimally invasive techniques for spine surgery in recent years has led to significant advancements in instrumentation for lumbar interbody fusion. Percutaneous pedicle screw fixation is now a mature technology, but the role of expandable cages is still evolving. The capability to deliver a multiexpandable interbody cage with a large footprint through a narrow surgica...

متن کامل

Patient Outcomes Following Posterior Lumbar Interbody Fusion for Adjacent Segment Disease Using VariLift® as a Standalone Expandable Interbody Device

Background: Adjacent segment disease (ASD) is a notable complication following lumbar fusion. Clinicians use various surgical techniques to correct progression of spine deterioration and reduce the risk of continued ASD. The aim of this retrospective case series is to describe patient outcomes following posterior lumbar interbody fusion (PLIF) using the VariLift® standalone expandable interbody...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Spine

دوره 37 2  شماره 

صفحات  -

تاریخ انتشار 2012